Contrast stretching on satellite data
Skills - python, sklearn, rasterio, TIFF
Introduction
This project was carried out as an experiment to understand contrast stretching on Landsat satellite imagery. Constrast stretching is a normalization technique to enhance the image quality by stretching the range of intesity values. The method allows us to create better images from satellite data captured at high temporal resolutions, but in partially cloud conditions.
Scene: LC80470262015165LGN02 center time is 2015-06-14 19:00:43
1. Read bands 3,4 and 5 (green, red and near-ir) and convert the image to double-precision (64-bit) floating point format:
tiff_file=list(data_directory.glob("*B1.TIF"))[0]
meta_file=list(data_directory.glob("*MTL.txt"))[0]
jpeg_file=list(data_directory.glob("*T1.jpg"))[0]
out=landsat_metadata(meta_file)
meta_dict = out.__dict__
with pil_image.open(tiff_file) as img:
tiff_meta_dict = {TAGS[key] : img.tag[key] for key in img.tag.keys()}
ch1 = img_as_float(img)
img_eq = exposure.equalize_hist(ch1)
plt.hist(ch1.ravel());
2. Draw histogram of intensity from the float obtained above
3. Creating plot of the low contrast image and high intensity normalized image
plt.imshow(ch1)
plt.imshow(img_eq[1000:4000,1500:5000],interpolation="nearest");
4. Convert high contrast image to map, with shapefile for borders. Create histogram of the new image floats.
from matplotlib import pyplot as plt
import cartopy
zone=meta_dict['UTM_ZONE']
zone_code = 32633
#https://epsg.io/32610
crs = cartopy.crs.epsg(zone_code)
fig, ax = plt.subplots(1, 1,figsize=[5,5],subplot_kw={'projection': crs})
ax.imshow(img_eq, origin='lower', extent=[xmin, xmax, ymin, ymax], transform=crs,
interpolation='nearest')
ax.coastlines(resolution='10m',color='red',lw=1)
ax.set_extent([xmin,xmax,ymin,ymax],crs)
5. Plot comparision of image quality with its histograms
%matplotlib inline
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
from skimage import data, img_as_float
from skimage import exposure
matplotlib.rcParams['font.size'] = 8
def plot_img_and_hist(image, axes, bins=256):
"""Plot an image along with its histogram and cumulative histogram.
"""
image = img_as_float(image)
ax_img, ax_hist = axes
ax_cdf = ax_hist.twinx()
# Display image
ax_img.imshow(image, cmap=plt.cm.gray)
ax_img.set_axis_off()
# Display histogram
ax_hist.hist(image.ravel(), bins=bins, histtype='step', color='black')
ax_hist.ticklabel_format(axis='y', style='scientific', scilimits=(0, 0))
ax_hist.set_xlabel('Pixel intensity')
ax_hist.set_xlim(0, 1)
ax_hist.set_yticks([])
# Display cumulative distribution
img_cdf, bins = exposure.cumulative_distribution(image, bins)
ax_cdf.plot(bins, img_cdf, 'r')
ax_cdf.set_yticks([])
return ax_img, ax_hist, ax_cdf
# Load an example image
img = np.array(pil_image.open(tiff_file))
# Contrast stretching
p2, p98 = np.percentile(img, (2, 98))
img_rescale = exposure.rescale_intensity(img, in_range=(p2, p98))
# Equalization
img_eq = exposure.equalize_hist(img)
# Adaptive Equalization
img_adapteq = exposure.equalize_adapthist(img, clip_limit=0.01)
# Display results
fig = plt.figure(figsize=(8, 5))
axes = np.zeros((2, 4), dtype=np.object)
axes[0, 0] = fig.add_subplot(2, 4, 1)
for i in range(1, 4):
axes[0, i] = fig.add_subplot(2, 4, 1+i, sharex=axes[0,0], sharey=axes[0,0])
for i in range(0, 4):
axes[1, i] = fig.add_subplot(2, 4, 5+i)
ax_img, ax_hist, ax_cdf = plot_img_and_hist(img, axes[:, 0])
ax_img.set_title('Low contrast image')
y_min, y_max = ax_hist.get_ylim()
ax_hist.set_ylabel('Number of pixels')
ax_hist.set_yticks(np.linspace(0, y_max, 5))
ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_rescale, axes[:, 1])
ax_img.set_title('Contrast stretching')
ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_eq, axes[:, 2])
ax_img.set_title('Histogram equalization')
ax_img, ax_hist, ax_cdf = plot_img_and_hist(img_adapteq, axes[:, 3])
ax_img.set_title('Adaptive equalization')
ax_cdf.set_ylabel('Fraction of total intensity')
ax_cdf.set_yticks(np.linspace(0, 1, 5))
# prevent overlap of y-axis labels
fig.tight_layout()
plt.show()